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Short Papers

Damping of the Resonant Modes of a Rectangular
Metal Package

DYLAN F. WILLIAMS, MEMBER, IEEE

Abstract —When an electrical circuit is enclosed in a metal package
- large enough to support resonant modes within the frequencies of opera-
tion of the enclosed circuit, coupling between the circuit and these reso-
nant cavity modes may disturb circuit operation. These resonant cavity
modes can be effectively damped by placing a dielectric substrate coated
with a resistive film in the cavity. In this paper a numerical algorithm is
used to find the frequencies and quality factors of the lowest order
resonant mode of a cavity damped in this manner.

I. INTRODUCTION

Electrical circuits must often be enclosed in metal packages
both to protect the circuit from material contamination and to
provide electrical isolation. Many circuits, especially monolithic
microwave integrated circuits (MMIC’s), must be placed in metal
packages which are large enough to support resonant modes at
their frequencies of operation. (The frequencies of the resonant
modes of a metal package decrease as the package dimensions
increase, increasing the likelihood of interference with the en-
closed circuit.) If these resonant modes have a very high quality
factor Q, as is uvsually the case, even a very loose coupling
between the circuit and these modes can disturb circuit opera-
tion.

This undesirable interaction between the circuit and the reso-
nant cavity modes of the package can be reduced or eliminated
by damping the resonant cavity modes. Conventional microwave
absorbers composed of materials with bulk resistive properties
may be placed in the package for this purpose, as has been done
by Hallford and Bach [1]. Circuit reliability may be compro-
mised, however, if microwave absorbers based on organic materi-
als such as silicon rubber with a potential for outgassing are
placed in the package with GaAs MMIC’s. Furthermore, many
microwave absorbers based on inorganic materials are difficult to
machine to the small thicknesses required at microwave frequen-
cies.

In this paper it will be shown that the resonant modes of a
rectangular metal package may be damped by fixing a dielectric
substrate coated with a thin resistive film to one of its walls, thus

solving the reliability and machining problems associated with

many conventional microwave absorbers. This is similar to the
approach used in the Jaumann absorber [2], in which resistive
films supported by low dielectric substrates are placed at roughly
quarter-wavelength intervals from a ground plane to suppress
electromagnetic reflections. The technique discussed here differs,
however, in that the substrates in this case may have a high
dielectric constant, may be much thinner, and are designed to
suppress resonant modes rather than propagating waves.

The package which is investigated is shown in Fig. 1. The
package is assumed to have perfectly conducting metal walls. A
dielectric substrate with relative dielectric constant ¢, and thick-
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Fig. 1. Dimensions of the rectangular metal package. The substrate has a
dielectric constant ¢, and a thickness ¢. The substrate is coated with a thin
film of resistivity R,, at z=h —¢.

‘ness ¢ is fixed to the upper wall of the package cavity. A thin

resistive film coats the air—dielectric interface at z=h—1t.
In the following it is shown how the fields in the cavity of the
package may be expressed as a superposition of simple modes. It

* is then shown how consideration of the boundary conditions at

the air-dielectric interface supporting the resistive film leads to a
numerical algorithm for determining the resonant frequency and
the quality factor Q of the resonant cavity modes. Finally, for a
number of geometries, graphs are given allowing the determina-
tion of the film resistivity which optimally damps (i.e., reduces
the dominant resonant mode’s unloaded quality factor to its
minimum value) the lowest order cavity mode of packages with
heights much less than their widths or lengths.

II.‘ THE BOUNDARY VALUE PROBLEM

In the absence of the resistive film, the resonant cavity modes
of the package are the TM,,,, and TE,,, modes discussed by
Harrington [3] with respect the z coordinate defined in Fig. 1,
where n, m, and [ are the mode numbers in the x, y, and z
directions, respectively. (It is not possible to find TM or TE
modes with respect to x or y, as discussed by Harrington [3].) We
will restrict our attention to these modes, and will only discuss
the TM,;, mode in detail. (The TM;;, mode is the first mode to
be excited in a package with a height much less than its length or
width and, therefore, is in practice the most often encountered

-resonant mode.)

For substrate dielectric constants nct equal to unity, the TM,;,
mode has electric field components tangential to the air-diclec-
tric interface, and can be damped by a resistive film at that
interface. It is desirable to choose a film resistivity which will
damp this mode as fully as possible (i.e., reduce its unloaded
quality factor Q to the minimum possible value). It is not
possible to use perturbation technicues to estimate the film
resistivity required to optimally damp this resonant mode be-
cause the resistive film alters the fields of the mode significantly
when it is maximally damped. It is possible, however, to solve for
the resonant modes of the package directly, as will be outlined
below.

The TM,,,, and TE,, modes of the package cavity may be
treated by writing the fields in the dielectric and in the air as a
superposition of TM,,,, and TE,  modes, respectively. (The
TM,,,, and TE,,, modes are not coupled by the boundary condi-
tions at the air-dielectric interface, even in the presence of a
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resistive film.) The resonant frequencies and relative amplitudes
of the TM,,,, or the TE,,, modes in each region may be deter-
mined by matchmg the boundary conditions at the air-dielectric
interface.

If the time variation e/’ is suppressed, the TM, . modes with
respect to z below the air—dielectric interface (0 <z <h —t) are

(4]
E,=A,, sin(nmx/a)sin(may/b) cos(B,,z) 1

E =~ 4,,,( Bo(nm/a)/k},,,) cos(nmx/a)
-sin(mmy/b)sin(B,,,z) (2
E, =~ A, Bum(mm/b) /K2, ) sin(n7x /a)
-cos(mmy/b)sin(B,,,z) (3)
H =0 4)
H, = Ay ( sk / Zok2s ) (mm/b) sin(nmx /a)
- cos(mmy/b) cos(B,,2) (5)
H,=—A,,( jko/Z,k2,, ) (nm/a)cos(nmx/a)
~sin(may/b) cos(B,,.z) (6)

and the TE,,, modes with respect to z are

m 08 (nwrx /a) cos(mary/b) sin( B,,,2) @)

H, = = Cyp( Bun(n/a) /K2, ) sin(nmx /a)
- cos(mmy/b) cos(B,.) (®

H, = = Gy (B (mu/b) /K2, ) cOs(nmx/a)
-sin(may/b) cos(B,,,2) (9
E =0 (10)

E =G, ( jkoZo(mmn/b) /K2, ) cos(nnx/a)
-sin(may/b)sin( B,,.2) (11)

E, =G, jkoZo(nm/a) /KL, ) sin(nmx/a)
- cos(may/b)sin( B,,,z) (12)
where

= K§ — Kl (13)
k2= (nm/a)’ +(mm/b)’ (14)
ko=w/c (15)

and Z, is the impedance of free space, ¢ is the speed of light in
free space, w is the resonant frequency of the mode, and 4,
and C,,, are the amplitudes of the TM,,,, and the TE,, modes in
the cavity region, respectively. Since the cavity is lossy, «» may be
complex.

The electromagnetic fields in the dielectric region (A —1 <z <
h) are described as a superposition of the same TE,,, and TM,,,
modes, except that B,,, is replaced by B/, 4,.. is replaced by
B,,, C,, is replaced by D,,,, (5) and (6) are multiplied by ¢,, and
z is replaced by z — h, where

Bn/r%z = erkO - kc2nm (16)

and where B, and D,, are the amplitudes of the TM
TE,,, modes in the dielectric, respectively.
At the dielectric interface, the tangential electric field must be

continuous. This implies that

E~= Et+

and the

nm

(17)
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where E;" and E, are the electric fields tangential to and just
above and below the dielectric interface, respectively. The tan-
gential electric field at the interface can be related to the surface
current at the interface via Ohm’s law. The discontinuity in the
magnetic field across the interface can also be related to the
surface current, giving a second boundary condition

E =R, :x(H*~H")

(18)
where R, is the surface resistivity in Ohms per square of the
film, z is the unit vector in the z direction, X denotes the vector
cross product, H* and H~ are the magnetic fields just above
and below the air-dielectric interface, respectively, and E, = E,'
= E; (see (17)) is the tangential electric field at the interface.

To find the solution for a TM,,, or a TE,,, mode, the
expressions for the fields of the T™M,,, or the TE,, modes,
respectively, at the air-dielectric interface given in (1)-(16) are
inserted into (17) and (18). It is easy to show that when the x
component of (17) and (18) are satisfied, the boundary conditions
on the y and z components of the magnetic and electric fields
are also satisfied. Thus only one tangential component of (17)
and (18) need be considered. If common factors are eliminated,
the result may be expressed in matrix form as

)| [o]

for the TM modes and

(ol {13
for the TE modes where the x component of (17) results in
M,y =B, (nn/a)sin(B,,(h—1))
12=—Bim(nn/a)sin(B;,1)
K, =jkOZO(mﬂ/b)sin(Bnm(h~t))
= jkoZy(mu/b)sin(B;,.1)
and where the x component of (18) results in
My = M11+(Jk /Zy) R, (”"T/U)COS(:Bnm(h 1))
M,, =—¢,( jko/Z)) R, (nm/a)cos( B.,1)
Ky =Ky, + B, R, (mn/b)cos(B,,(h—1))
Ky =—BuR,,(mn/b)cos(B,t).

Equations (19) and (20) are complex transcendental equations.
Equation (19) may be written as

€, nmtan(Bnm(h t))———_*ﬁ

where E is given by E = 8,,, tan(B,,,(h —
(20) may be written as

Bin @0 (B (h=0) 1=~ B an(Bt)  (22)

where F is given by F=(jkyZy)tan(B,,,(h—1)/(R,,.B..)-
Equations (21) and (22) reduce to the usual characteristic equa-
tions (see [3, egs. (4-45), (4-47)]) for the T™,,,,, and the TE,,,
modes, respectively, when R, is large.

In general, neither equation has a nonzero solution. If either M
or K are singular, a nonzero solution exists, the determinant of
the singular matrix is zero, and either (21) or (22) is satisfied. In
this case, the nontrivial solution corresponds to a TM,,,,, or a
TE,,,, resonant cavity mode. The determinants of M and K are
complex functions of w, and hence their zeroes are not easily
found analytically. These determinants are easily calculated on a
computer, however, as a function of w. The zeroes of the determi-

(19)

(20)

tan( B.,t) (21)
) /(R,, jko/Zy) and
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Fig. 2. The film resistivity which damps optimalily the TM;,, mode is plot-
ted as a function of the substrate dielectric constant e, for several values of
normalized substrate thickness ¢ /4.
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Fig. 3. The Q of the optimally damped TM,,, mode is plotted as a function
of the substrate dielectric constant ¢, for several values of normahzed
substrate thickness 7 /h.

nants may then be found by an algorithm employing a gradient
search technique using the resonant frequency of the TM, ,
mode at infinite resistivity as a starting value. If the real and
imaginary parts of the w for which the determinate of M or K is
zero are given by w, and w,, respectively, then the frequency of
the resonant mode is just w, and the rate at which the mode is
damped is determined by w,. Neglecting the loading introduced
by the coupling of the circuit to the mode, the quality factor O of
the resonant mode (often referred to as the unloaded quality
factor) is adequately approximated as [5]

0=uw/(20) (23)

for reasonably large values of Q. This equation is used for the
present calculations.

III. NUMERICAL RESULTS

The film resistivity which damps the TM,;, mode optimally is
of special interest since this is the mode with the lowest resonant
frequency when the cavity height is much less than its width or
length. In Fig, 2 the film resistivity which damps the TM,;;, mode
optimally is plotted for a cavity with dimensions b/a=2 and
h/a=0.1 as a function of ¢, for several substrate thicknesses.
The Q of the optimally damped mode is plotted in Fig. 3. It was
found that the resonant frequencies of the mode changed only
minimally when damped optimally for the cases considered here
in which the substrate thickness was small compared to the
package height, and thus were not plotted. From Fig. 3 it is
apparent that substrates with high dielectric constants are more
effective in damping the mode. This is because the tangential
electric field of the mode, which is responsible for the surface
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Fig. 4. The film resistivity which damps optimally the TM;;, mode is plot-
ted as a function of the normalized cavity length b/a for several values of
normalized substrate thickness ¢/h and dielectric constant «,.
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Fig. 5. The film resistivity which damps optimally the TM;;4 mode is plot-
ted as a function of the normalized cavity height  /a for several values of
normalized substrate thickness t/h and dielectric constant «,.

currents in the resistive film, decreases as the dielectric constant
of the substrate ¢, approaches unity, and vanishes in the limit of
¢, =1. In Fig. 4 this optimal film resistivity is shown as a function
of the normalized cavity length b/a for two values of substrate
thickness and dielectric constant. In Fig. 5 the optimal resistivity
is shown as a function of the normalized cavity height % /a for
several values of substrate thickness and dielectric constant. The
Q of the optimally damped mode shows very little dependence on
the normalized cavity length b/a or the normalized cavity height
h/a, and can be estimated to within 20 percent from Fig. 3 over
the ranges plotted.

IV. ConcrLusioN

It has been shown that the lowest order TM;;, resonant mode
of a metal package can be suppressed by fixing a substrate coated
with a thin resistive film to the upper wall of the package cavity.
Design information was presented to easily allow unwanted
modes to be effectively damped with this technique.

It was found that it is possible to obtain resonant mode quality
factors of 20 or less with film resistivities between 10 and 30
£ /sq on high dielectric constant substrates. Thin films of this
resistivity can be formed on alumina, which has a high dielectric
constant, by evaporating approximately 100-1000 A of chrome
or titanium on its surface. The backside of the alumina substrate
may then be metalized and soldered to the lid of a package
containing a large MMIC, using the same proven technology
used to affix the circuit to the bottom of the package, effectively
damping the lowest order cavity mode supported by the package.
This is an inexpensive alternative to conventional microwave



256

absorbers, and has the advantage of posing no circuit reliability
problems. )

The results presented were limited to the TM;;, mode. The
analysis may be easily applied to higher order cavity modes if the
circuit couples to those modes.
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Finite Element Formulation for Guided-Wave Problems
Using Transverse Electric Field Component

KAZUYA HAYATA, MASASHI EGUCHI, AND
MASANORI KOSHIBA, SENIOR MEMBER, 1EEE

Abstract — A finite-element formulation for electromagnetic waveguide
problems is described using the transverse electric field component. In this
approach, the divergence relation v-D =0 is satisfied and spurious solu-
tions can be eliminated in the entire region of a propagation diagram. The
validity of the formulation is examined via applications to a few canonical
guided-wave problems.

I. INTRODUCTION

The most serious difficulty in applying the finite element
method to waveguide problems has been the appearance of
so-called spurious, nonphysical solutions. To overcome this diffi-
culty, various approaches have recently been developed; these are
reviewed in [1]. More recently, a new finite element formulation
for the analysis of dielectric waveguide modes has been devel-
oped by the authors in terms of the transverse magnetic field
component (H,) [2). The key point of this method, which is
distinctly different from other transverse field methods [3]-[7], is
that it transforms the finite element equation in terms of a full
vector H field [8], [9] into one in terms of only the transverse
magnetic field component, using the condition v+-H = 0. In this
approach, the spurious solutions can be completely eliminated in
the entire region of a propagation diagram, and the final matrix
dimension is reduced to two thirds that of the conventional
three-component approach using the penalty function method
[10]-]14). However, in the finite element analysis based on this
approach, the magnetic field components are first obtained as an
eigenvector, and the electric field components are later derived
from them via Maxwell’s equations. This additional operation
based on spatial differentiations of the original data may cause
an unnatural field profile when one uses lower order Lagrange
clements.

In this paper, as an electric field version of the method
described in [2], a finite element method for electromagnetic
waveguide problems is formulated using the transverse electric
field component (E,). In this approach, the spurious solutions
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can be eliminated in the entire region of a propagation diagram,
and the dimension of the final matrix equation is reduced to two
thirds that of the full vector E field approach based on a penalty
function [15], [16]. The validity of the present method is con-
firmed via applications to a few representative wavegniding prob-
lems.

II. FORMULATION

We consider a waveguide with a tensor permeability and a
scalar permittivity. With a time dependence of the form exp (jw?)
being implied, from Maxwell’'s equations the following wave
equation is derived:

v X([p] 'V XE)—k}kE=0

M
where  is the angular frequency, &, is the free-space wavenum-
ber, [p] is the relative permeability tensor, and € is the relative
permittivity, which is assumed to be constant in each material.

The divergence relation for source-free media, v-D = 0, can be
written

¢E, = (jB) '(<E, /dx +€IE, /dy) 2

where 8 is the phase constant in the propagation direction (z
direction).

Application of the standard finite element technique [2] to (1)
and (2) gives the following matrix equations:

[SI{E}-(ko/BYITI{E} = {0} (3)
[DH{E} =[DI{E} (4)

where

[51=2 [[[BTLn). (] dxdy (5)
(T1=Z [[eINPIN]dzap (6)

[D]=% [[eN) () didy ()

(21 ==L [[le (N} {(M)D efN} (V)] diap (8)

E
{E}=HEyH )

Here, { N} is the shape function vector; {0} is a null vector; 7,
{-}, and {-}” denote a transpose, a column vector, and a row
vector, respectively; the components of vectors { E, }, { E, }, and
{E,} are the values of £, E_, and E, at nodal points in the
cross section, respectively; * denotes complex conjugate; X = Bx
and y=By; and [N] and [ B] are given in [14].

Using (4), we can express the nodal electric field vector { E} in
terms of { E,}:

{E}Y=[DPI{E}

| 1w
Lp1= [[DZJ*[D,]}'

Here [U] is a unit matrix.

Substituting (10) into (3) and multiplying (3) by [D]7 from the
left, we obtain the following final matrix equation with respect to
the transverse electric field component { E, }:

(10)

where

(11)

[S.1(E}~(ko/BY [T {E} = {0} (12)
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