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Short Papers _

Damping of the Resonant Modes of a Rectangular

Metal Package

DYLAN F. WILLIAMS, MEMBER, IEEE

Abswzct — When an electrical circuit is enclosed in a metaf package

huge enough to support resouant modes withkr the frequencies of opera-

tion of the euclosed circuit, coupling between the circuit and these reso-

nant cavity modes may disturb circuit operation. ‘f’hcse resonant cavity

modes can be effectively damped by placing a dielectric substrate coated

with a resistive film in the cavity. In this paper a numerical algorithm is

used to find the frequencies and quality factors of the lowest order

resonant mode of a cavity damped in this manner.

I. INTRODUCTION

Electrical circuits must often be enclosed in metaf packages

both to protect the circuit from materiaf contamination and to

provide electrical isolation, Many circuits, especially monolithic

microwave integrated circuits (MMIC’S), must be placed in metal

packages which are large enough to support resonant modes at
their frequencies of operation. (The frequencies of the resonant
modes of a metaf package decrease as the package dimensions

increase, increasing the likelihood of interference with the en-

closed circuit.) If these resonant modes have a very high quality

factor Q, as is usually the case, even a very loose coupling

between the circuit and these modes can disturb circuit opera-

tion.

This undesirable interaction between the circuit and the reso-

nant cavity modes of the package can be reduced or eliminated

by damping the resonant cavity modes, Conventional microwave

absorbers composed of materials with bulk resistive properties

may be placed in the package for this purpose, as has been done

by Hanford and Bach [1]. Circuit reliability may be compro-

mised, however, if microwave absorbers based on organic materi-

als such as silicon rubber with a potential for outgassing are

placed in the package with GaAs MMIC’S. Furthermorei many

microwave absorbers based on inorganic materials are difficult to

machine to the small thicknesses required at microwave frequen-

cies.

In this paper it will be shown that the resonant modes of a

rectangular metal package may be damped by fixing a &lelectric

substrate coated with a thin resistive film to one of its walls, thus

solving the reliability and machining problems associated with

many conventional microwave absorbers. This is similar to the

approach used in the Jaumann absorber [2], in which resistive

films supported by low dielectric substrates are placed at roughly

quarter-wavelength intervals from a ground plane to suppress

electromagnetic reflections. The technique discussed here differs,

however, in that the substrates in this case may have a high

dielectric constant, may be much thinner, and are designed to

suppress resonant modes rather than propagating waves.

The package which is investigated is shown in Fig. 1. The

package is assumed to have perfectly conducting rnetaf walls. A

dielectric substrate with relative dielectric constant c, and thick-
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Fig. 1. Dimensions of the rectangular metal package. The substrate has a
dielectric constant c, snd a thickness t. The substrate is coated with a thin
film of resistivity Rm at z = h – t.

ness t is fixed to the upper wall of the package cavity. A thin

resistive film coats the air-dielectric interface at z = h – t.

In the following it is shown how the fields in the cavity of the

package may be expressed as a superposition of simple modes. It

is then shown how consideration of the boundary conditions at

the air-dielectric interface supporting the resistive film leads to a

numerical algorithm for determining the resonant frequency and

the quality factor Q of the resonant cavity modes. Finally, for a

number of geometries, graphs are given allowing the determina-

tion of the film resistivity which optimally damps (i.e., reduces

the dominant resonant mode’s unloaded quality factor to its

minimum value) the lowest order cavity mode of packages with

heights much less than their widths or lengths.

II. l%E BOUNDARY VALUE PROBLEM

In the absence of the resistive film, the resonant cavity modes

of the package are the TM~~l and TE~~l modes discussed by

Barrington [3] with respect the z coordinate defined in Fig. 1,

where n, rn, and 1 are the mode numbers in the x, y, and z

directions, respectively. (It is not pcssible to find TM or TE

modes with respect to x or y, as discussed by Barrington [3],) We

will restrict our attention to these modes, and will only discuss

the TMIIO mode in detail. (The TMII() mode is the first mode to

be excited in a package with a height much less than its length or

width and, therefore, is in practice the most often encountered

resonant mode.)

For substrate dielectric constants net equaf to unity, the TMIIO

mode has electric field components tangential to the air-dielec-

tric interface, and can be damped by a resistive film at that

interface. It is desirable to choose a film resistivity which will

damp this mode as fully as possible (i.e., reduce its unloaded

quality factor Q to the minimum possible value). It is not

possible to use perturbation technicpes to estimate the film

resistivit y required to optimally damp this resonant mode be-

cause the resistive film alters the fields of the mode significantly

when it is maximally damped. It is possible, however, to solve for

the resonant modes of the package directly, as will be outlined

below.

The TM~~l and TEn~l modes of the package cavity may be

treated by writing the fields in the dielectric and in the air as a

superposition of TM.~ and TE.~ modes, respectively. (The

TMti~ and TE~. lmodes are not coupled by the boundary condi-

tions at the air-dielectric interface, even in the presence of a
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resistive film.) The resonant frequencies and relative amplitudes

of the TMnm or the TE,lm modes in each region may be deter-

mined by matching the boundary conditions at the air-dielectric

interface.

If the time variation eJw’r is suppressed, the TM,,., modes with

respect to z below the air-dielectric interface (O < z < h – t) are

[4]

E:= A,,,,t sin( nwx/a) sin( rnny/b) COS(~fl~z)

E.= – An~(l?.n( n7r/a)/ki.M) cos( n7rx/a)

. sin( wz77y/b) sin(~~,,lz)

-EY = – A,lnl( B.m( rn7r/b)/&,.) sin( n~x/a)

- cos ( tnfiy/b) sin ( /3,,,,lz)

Hz=o

Hy = Anm( jkO/ZOk~nH, )( mT/b) sin(nnx/a)

. Cos( s’n7ry/b) Cos(flnfizz)

H,= – A,,m( jkO/ZOk~,,n)( nn/a) COS(nwx/a)

. sin(nzny/b) cos(~flmz)

and the TEn ~ modes with respect to z are

H:= Cn~ COS(n~x/a) cos(rnny/b) sin( ~~mz)

HX = – C~w( ~~m,( rs7r/a)/k~~~,) sin(n7fx/a)

. COS( mry/b) COS(flfl~,)

IfY = – Cnn,(/3nH1( mn/b)/k~.~) COS(nrx/a)

. sin( mmy/b) cos(fl..,z)

EZ=O

EX = ~,m( jkOZO(mn/b)/k~H~) cos(nnx/a)

. sin( mny\b) sin( &~z)

E,= – Cfl,,, (jkOZO(n~/a)/kj~w) sin(nnx/a)

. COS( rnrry/b) sin(fl~~z)

where

& = k; – k:e~

k:fl~ = (nn/a)2+(mr/b)2

k.= f.J/C

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

and 20 is the impedance of free space, c is the speed of light in

free space, u is the resonant frequency of the mode, and A~~

and C~~ are the amplitudes of the TM~~ and the TEH~ modes in

the cavity region, respectively. Since the cavity is 10SSY,o maybe

complex.

The electromagnetic fields in the dielectric region (h – t < z <

h) are described as a superposition of the same TE.., and TM.WZ

modes, except that ~.~ is replaced by j3~,,Z, A.m, is replaced by

.M, C~~ is replaced by D~H,, (5) and (6) are multiplied by e,, andB

z is replaced by z — h, where

~;; = crk; – k:n~ (16)

and where B~m and D~m are the amplitudes of the TM,,., and the

TE~Hl modes in the dielectric, respectively.

At the dielectric interface, the tangential electric field must be

continuous. This implies that

E,- = E: (17)

where Et+ and Et– are the electric fields tangential to and just

above and below the dielectric interface, respectively. The tan-

gential electric field at the interface can be related to the surface

current at the interface via Ohm’s law. The discontinuity in the

magnetic field across the interface can also be related to the

surface current, giving a second boundary condition

E1=R,H2x(H+– H-) (18)

where Rn, is the surface resistivity in Ohms per square of the

film, z is the unit vector in the z direction, x denotes the vector

cross product, H+ and H– are the magnetic fields Just above

and below the air-dielectric interface, respectively, and Et = Et+

= Et- (see (17)) is the tangential electric field at the interface.

To find the solution for a TM~~, or a TE~W,, mode, the

expressions for the fields of the TM.n or the TE.n modes,

respectively, at the air-dielectric interface given in (1)–(16) are

inserted into (17) and (18). It is easy to show that when the x

component of (17) and (18) are satisfied, the boundary conditions

on the y and z components of the magnetic and electric fields

are also satisfied. Thus only one tangential component of (17)

and (18) need be considered. If common factors are eliminated,

the result may be expressed in matrk form as

[“J][&]= [:]

for the TM modes and

(19)

(20)

for the TE modes where the x component of (17) results in

Ml, = –/3.,,l(nn/a) sin(ll.,(h – t))

M,l = – f?;.l( nn/a) sin( PLI1)

K,, = jkOZO(mn/b) sin(~,,.l(h - t))

K12 = jkOZO( inn/b) sin( /3~WZt)

and where the x component of (18) results in

M21=M11+(jk0/ZO) Rm(n~\a)cos(f?~~(h - t))

M,, = – c,( jko/ZO) RE,( n~/a) COS(~~~t)

K,, = K,, + &~ R~(m~/b)cos(&M(h – I))

KZ2 = –/j;mR.Z(nz~/b) cos(~;w,f).

Equations (19) and (20) are complex transcendental equations.

Equation (19) may be written as

~,fl,,., tan(L(~ – 0)+ = - /3~Mtan( ~~~1) (21)

where E is given by E = /3~~ tan(fln,,,(h– f))/(R&ljkO/ZO) and

(20) may be written as

P;mtan(Bnm(h -~))+F= -P,,mt~(P;m~) (22)

where F is given by F= (jkOZO)tan(&,~(h – t))/(Rnl&,,l).

Equations (21) and (22) reduce to the usual characteristic equa-

tions (see [3, eqs. (4-45), (4-47)]) for the TMnml and the TEmM~

modes, respectively, when R,,l is large.

In general, neither equation has a nonzero solution. If either M

or K are singular, a nonzero solution exists, the determinant of

the singular matrix is zero, and either (21) or (22) is satisfied. In

this case, the nontrivial solution corresponds to a TM.~l or a

TE~~, resonant cavity mode. The determinants of M and K are

complex functions of o, and hence their zeroes are not easily

found analytically. These determinants are easily calculated on a

computer, however, as a function of a. The zeroes of the determi-
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Fig. 2. The film resistivity which damps optimally the TMIIO mode is plot-

ted as a function of the substrate dielectric constant e, for several values of

normalized substrate thickness t/h.
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Fig. 3, The Q of the optimally danrped TM110 mode is plotted as a function

of the substrate dielectric constant [, for severaf vah.res of normatrzed

substrate thickness t/h.

nants may then be found by an algorithm employing a gradient

search technique using the resonant frequency of the TM~~l

mode at infinite resistivity as a starting value. If the real and

imaginary parts of the w for which the determinate of M or K is

zero are given by ;, and co,, respectively, then the frequency of

the resonant mode is just u, and the rate at which the mode is

damped is determined by co,. Neglecting the loading introduced

by the coupling of the circuit to the mode, the quality factor Q of

the resonant mode (often referred to as the unloaded quality

factor) is adequately approximated as [5]

(23)

for reasonably large values of Q. This equation is usecl for the

present calculations.

III. NUMERICAL RESULTS

The film resistivity which damps the TMIIO mode optimally is

of special interest since this is the mode with the lowest resonant

frequency when the cavity height is much less than its width or

length. In Fig. 2 the film resistivity which damps the TM110 mode

optimally is plotted for a cavity with dimensions b/a = 2 and

h/a = 0.1 as a function of c, for several substrate thicknesses.

The Q of the optimally damped mode is plotted in Fig. 3. It was

found that the resonant frequencies of the mode changed only

minimally when damped optimally for the cases considered here

in which the substrate thickness was small compared to the

package height, and thus were not plotted. From Fig. 3 it is

apparent that substrates with high dielectric constants are more

effective in damping the mode. This is because the tangential

electric field of the mode, which is responsible for the surface
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Fig. 4. The film resistivity which damps optimally the TM110 mode is plot-

ted as a function of the normalized cavity length b/a for severat vatues of

normalized substrate duckness t/h and dielectric constant c,.
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Fig. 5, The fdm resistwity wtuch damps optimally the TMIIO mode is plot-
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currents in the resistive film, decreases as the dielectric constant
of the substrate C, approaches unity,, and v&ishes in the limit of
c, =1. In Fig. 4 this optimal film resistivity is shown as a function
of the normalized cavity length b/a for two values of substrate

thickness Ad dielectric constant. In Fig. 5 the optimal resistivity

is shown as a function of the normalized cavity height h/a for

several values of substrate thickness and dielectric constant. The

Q of the optimally damped mode shows very little dependence on

the normalized cavity length b/a or the normalized cavity height
h/a, and can be estimated to within 20 percent from Fig. 3 over

the ranges plotted.

IV. CONCLUSION

It has been shown that the lowest order TM ~10 resonant mode

of a metal package can be suppressed by fixing a substrate coated

with a thin resistive film to the upper wall of the package cavity.

Design information was presented to easily allow unwanted

modes to be effectively damped with this technique.

It was found that it is possible to obtain resonant mode quality

factors of 20 or less with film resistivities between 10 and 30

fl/sq on high dielectric constant substrates. Thin films of this
resistivity can be formed on alumina, which has a high tlelectric

constant, by evaporating approximai ely 100– 1000 A of chrome

or titanium on its surface. The backsj de of the alumina substrate

may then be metalized and soldered to the lid of a package

containing a large MMIC, using the same proven technology

used to affix the circuit to the bottom of the package, effectively

damping the lowest order cavity mode supported by the package.

This is an inexpensive alternative to conventional microwave
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absorbers, and has the advantage of posing no circuit reliability

problems.

The results presented were limited to the TMIIO mode. The

analysis may be easily applied to higher order cavity modes if the

circuit couples to those modes.
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Finite Element Formulation for Guided-Wave Problems

Using Transverse Electric Field Component

KAZUYA HAYATA, MASASHI EGUCHI, AND

MASANORI KOSHIBA, SENSOR MEMBER, IEEE

Abstract —A finite-element formulation for electromagnetic waveguide

problems is described using the transverse electric field component. In this

approach, the divergence relation V D = O is satisfied and SpUriOUS SOIU-

tions can be eliminated in the entire region of a propagation diagram. The

validity of the formulation is exmniued via applications to a few canonical

guided-wave problems.

I. INTRODUCTION

The most serious difficulty in applying the finite element

method to waveguide problems has been the appearance of

so-called spurious, nonphysicrd solutions. To overcome this diffi-

cult y, various approaches have recently been developed; these are

reviewed in [1]. More recently, a new finite element formulation

for the analysis of dielectric waveguide modes has been devel-

oped by the authors in terms of the transverse magnetic field

component (17t ) [2]. The key point of this method, which is

distinctly different from other transverse field methods [3]-[7], is

that it transforms the finite element equation in terms of a full

vector IZ field [8], [9] into one in terms of only the transverse

magnetic field component, using the condition v. H = O. In this

approach, the spurious solutions can be completely eliminated in

the entire region of a propagation diagram, and the finaf matrix

dimension is reduced to two thirds that of the conventional

three-component approach using the penrdty function method

[10]-[14]. However, in the finite element analysis based on this

approach, the magnetic field components are first obtained as an

eigenvector, and the electric field components are later derived
from them via Maxwell’s equations. This additional operation

based on spatial differentiations of the original data may cause

an unnatural field profile when one uses lower order Lagrange

elements.

In this paper, as an electric field version of the method

described in [2], a finite element method for electromagnetic

waveguide problems is formulated using the transverse electric

field component (E, ). In this approach, the spurious solutions
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can be eliminated in the entire region of a propagation diagram,

and the dimension of the final matrix equation is reduced to two

thirds that of the full vector E field approach based on a penalty

function [15], [16]. The validity of the present method is con-

firmed via applications to a few representative waveguiding prob-

lems.

11. FORMULATION

We consider a waveguide with a tensor permeability and a

scalar permittivity. With a time dependence of the form exp ( jtii)

being implied, from Maxwell’s equations the following wave

equation is derived:

vx([p]-lvx E)–k@=o (1)

where o is the angular frequency, k. is the free-space wavenum-

ber, [p] is the relative permeability tensor, and c is the relative

permittivity, which is assumed to be constant in each material.

The divergence relation for source-free media, v.~ = O, can be

written

tE, = (“jp)-l(caEx/’ax + ca~v/ay) (2)

where ~ is the phase constant in the propagation direction (z

direction).

Application of the standard finite element technique [2] to (1)

and (2) gives the following matrix equations:

[s]{ E}-(ko/’p)2[T] {E} = {o} (3)

[D,]{ E,}=[D,] {E,} (4)

where

[s] =~/J[B]*[p],-’[ B] ’d2dj (5)
ge

[T] =~J@N]*[N]%dj (6)
e

[D=l=i/J’e{N} {N} TdidY (7)
e

[Df]=:xJ~[c={N} {N}: te{~}{iv}:] dIdj (8)
e

[1{Ex}

{Et}= {E,} ~ (9)

Here, {N} is the shape function vector; {O} is a null vector; T,

{.}, and { ~}~ denote a transpose, a column vector, and a row

vector, respectively; the components of vectors { E.Y}, { EY }, and

{E= } are the values of EX, E,, and EZ at nodaf points in the

cross section, respectively; * denotes complex conjugate; x = /3x

and j = By; and [N] and [B] are given in [14].

Using (4), we can express the nodal electric field vector {E} in

terms of {E,}:

{E}=[~l{E, } (lo)

where

[1[u]

‘D]= [DZ]-l[ D,] “
(11)

Here [U] is a unit matrix.

Substituting (10) into (3) and multiplying (3) by [D]T from the

left, we obtain the following finaf matrix equation with respect to

the transverse electric field component {E, }:

[~,] {Et} -(kO/’/3[~r]r] {E,}= {O} (12)
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